Large eddy simulation of flow around a reverse rotating propeller
نویسندگان
چکیده
This paper studies the flow around a propeller rotating in the reverse direction in a uniform free stream. Large eddy simulation is used to study this massively separated flow at a Reynolds number of 480 000 and advance ratios J = −0.5, −0.7 and −1.0. Simulations are performed on two grids; statistics of the loads and velocity field around the propeller show encouraging agreement between the two grids and with experiment. The impact of advance ratio is discussed, and a physical picture of the unsteady flow and its influence on the propeller loads is proposed. An unsteady vortex ring is formed in the vicinity of the propeller disk due to the interaction between the free stream and the reverse flow produced by the reverse rotation. The flow is separated in the blade passages; the most prominent is the separation along the sharp edge of the blade on the downstream side of the blade. This separation results in high-amplitude, transient propeller loads. Conditional averaging is used to describe the statistically relevant events that determine lowand high-amplitude thrust and side-forces. The vortex ring is closer and the reverse flow induced by propeller rotation is lower when the loads are high. The propeller loads scale with ρU2 for J <−0.7 and with ρn2D2 for J >−0.7.
منابع مشابه
Large eddy simulation of propeller crashback
The large eddy simulation methodology is applied to predict the flow around a marine propeller in the forward and crashback modes of operation. A non-dissipative, robust numerical algorithm developed by Mahesh et al.(2004, J. Comput. Phys., 197: 215-240) for unstructured grids was extended to include the effect of rotating frame of reference. The thrust and torque coefficients obtained from the...
متن کاملInvestigating the Effect of Free Surface on Hydrodynamic Performance of Propeller
Simulation of the flow around propeller is a complex fluid flow problem, especially when the propeller is close to free surface. In this study, the effect of different depths on the performance and efficiency of a B-Wageningen series close to surface of water have been numerically investigated. For this purpose the ANSYS-FLUENT commercial software has been used to solve the viscous, incompressi...
متن کاملLarge Eddy Simulation of Ducted Propulsors in Crashback
Flow around Propeller 4381 with duct is computed with the large eddy simulation methodology during crashback condition. A non-dissipative robust numerical algorithm developed by Mahesh et al. (2004) for unstructured grids is used. The ducted propeller without stator blades is solved in a rotating frame of reference. The flow is computed up to about 86 revolutions at the advance ratio J=-0.7 and...
متن کاملAerodynamic Noise Computation of the Flow Field around NACA 0012 Airfoil Using Large Eddy Simulation and Acoustic Analogy
The current study presents the results of the aerodynamic noise prediction of the flow field around a NACA 0012 airfoil at a chord-based Reynolds number of 100,000 and at 8.4 degree angle of attack. An incompressible Large Eddy Simulation (LES) turbulence model is applied to obtain the instantaneous turbulent flow field. The noise prediction is performed by the Ffowcs Williams and Hawkings (FW-...
متن کاملMixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کامل